Optimal feature sub-space selection based on discriminant analysis
نویسندگان
چکیده
The performance of a speech recogniser, or of any other pattern classifier, strongly depends on the input features: to obtain a good performance, the feature set needs to be both highly discriminative and compact. Linear discriminant analysis (LDA) is a common data-driven method used to find linear transformations that map large feature vectors onto smaller ones while retaining most of the discriminative power. LDA however oversimplifies the problem by condensing all class information into only two scatter matrices, hence losing important information on the individual class distributions. We therefore propose a new approach, based on the mutual information or minimum classification error paradigm, which takes all information on the individual class distributions into account while searching an optimal sub-space, thus avoiding the crude approximations done by LDA. Experiments show that the proposed scheme provides more discriminative feature vectors, leading to substantially better recognition results.
منابع مشابه
Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملThe Bhattacharyya space for feature selection and its application to texture segmentation
A feature selection methodology based on a novel Bhattacharyya Space is presented and illustrated with a texture segmentation problem. The Bhattacharyya Space is constructed from the Bhattacharyya distances of different measurements extracted with sub-band filters from training samples. The marginal distributions of the Bhattacharyya Space present a sequence of the most discriminant sub-bands t...
متن کاملPseudo Optimization of E-Nose Data Using Region Selection with Feature Feedback Based on Regularized Linear Discriminant Analysis
In this paper, we present a pseudo optimization method for electronic nose (e-nose) data using region selection with feature feedback based on regularized linear discriminant analysis (R-LDA) to enhance the performance and cost functions of an e-nose system. To implement cost- and performance-effective e-nose systems, the number of channels, sampling time and sensing time of the e-nose must be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999